

Techniques of Water-Resources Investigations of the United States Geological Survey

Chapter C1

FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION IN TWO DIMENSIONS WITH RESULTS OF NUMERICAL EXPERIMENTS

By P. C. Trescott, G. F. Pinder, and S. P. Larson

Book 7

AUTOMATED DATA PROCESSING AND COMPUTATIONS

If NWEL=0 the following s	set of	cards	is	omitted.
---------------------------	--------	-------	----	----------

DATA SET 1		(NWEL ca	ards)
COLUMNS	FORMAT	VARIABLE	DEFINITION
1–10	G10.0	1	Row location of well.
11–20	G10.0	J	Column location of well.
21–30	G10.0	WELL (I,J)	Pumping rate (L^3/T) , negative for a pumping well.
31-40	G10.0	RADIUS	Real well radius (L) .

NOTE.—Radius is required only for those wells, if any, where computation of drawdown at a real well radius is to be made.

For each additional pumping period, another set of group IV cards is required (that is, NPER sets of group IV cards are required).

If another simulation is included in the same job, insert a blank card before the next group I cards.

Attachment IV

Sample Aquifer Simulation And Job Control Language

This appendix includes examples of job control language (JCL) for several different runs and an example problem designed to illustrate many of the options in the program. The grid and boundary conditions for the problem are given in figure 25. Figure 30 illustrates in cross section the type of problem being simulated, but note that it is not to scale.

The listing of data with the JCL examples is not on a coding form, but it should not be

FIGURE 30.—Cross section illustrates several options included in the sample problem and identifies the meaning of several program parameters.

difficult to determine the proper location of the numbers since the fields are either 4 or 10 spaces. Zero values have not been coded on the data cards to avoid unnecessary punching.

Figures 31 and 32 illustrate the JCL and data decks for two successive simulations of the sample problem. They are designed to show the use of disk facilities to store array data and interim results. The first run (fig. 31) is terminated after 5 iterations and interim results are stored on the data set specified by the FT04F001 DD statement. Note that arrays S, PERM, DELX, and DELY have been stored in the array data set specified by the FT02F001 DD statement (a 1 appears in column 40 of the parameter card for these arrays). The second run (fig. 32) continues computations from the previous stopping point and calculates a solution. Note that PHI, S, PERM, DELX, and DELY are read from disk storage. The final example (fig. 33) illustrates the JCL and data deck for a run without using the disk files. Following figure 33 is the output for the sample prob-

```
EXEC FORTGCG
            //FORT.SYSIN DD *
                    Model
                   source
                    cards
            //GO.FT02F001 DD DSN=A442702.AZ100.AG4W0000.MATRIX.
                   UNIT=ONLINE + DISP= (NEW + KEEP) +
            11
                   SPACE= (560 + (14)) + DCB= (RECFM=F)
            //GO.FT04F001 DD DSN=A442702.AZ100.AG4W0000.HEAD.
                  UNIT=ONLINE,DISP=(NEW,KEEP),SPACE=(TRK,(1,1),RLSE),
                   DCB=(RECFM=VBS+LRECL=1168+BLKSIZE=1172)
            //00.SYSIN DD *
                                                                     --- SAMPLE AQUIFER PROBLEM ---
Group I
                             EVAP RECH SIP CHEC
            WATE LEAK
                                                                DK2 NUME HEAD
            CONT
                                                      1500
                                                                                    FEET
                                                                     1
                                          .003
                                                       .01
                                                                     0
                                                                           .4E-06
                                                                                           10
                                                                                                      10
                      1
                                  1
                                  1
                      1
                                              1
Group II
     STRT
                    100
                                                                     1
        s
                                                                  1
                                                1
                                                         1
                                                             1
                                                     ì
                                  1
                   .002
                                                         2 2 2 3
                                                              2 2 2 3
                                                                  5 5
                                                2 2 3
                                           2 2 3 3
                                                                       2 3
      PERM
                             5
                                  2
2
3
                                                         3
                                                     3
                                                              3
                                                                       3
                                                                  3
    BOTTOM
                      0
      SY
      RATE
                 .3E-07
     RIVER
                    100
     GRND
                    105
                 2E-07
      QRE
                     50
                                              9
                                                         9
      DELX
                     20
                                 14
                                                                    14
                                                                               21
                                                                                           31
                                                                                                      41
                                 25
                                             17
                                                                     9
                     50
                                                                     1
                                  1
                                             7
                                                        10
                                                                               18
                                                                                           27
                                                                                                       30
      DELY
                     10
                                                                   14
                                                         1
                                                                     1
                                                                              1.0
                                                                                           24
                                  0
                                             6
                                            .05
                                           .05
Group IV
                                           .05
                                           .05
                                                         2
                                 11
                                           -10
```

FIGURE 31.—JCL and data deck to copy some of the data sets on disk, compute for 5 iterations, and store the results on disk.

FIGURE 32.—JCL and data deck to continue the previous run (fig. 31) to a solution.

lem generated using the JCL and problem deck shown in figure 33.

Figures 31 to 33 show that the source cards are being compiled for each run. It is more efficient, of course, to compile the source

deck once and store it as a load module on disk. Subsequent runs can use the load module with considerable reduction in cards read, CPU time, and lines printed.

		//FOR	EXEC T.SYS Model source cards	IN C	DD *										C.449. F.	404755	D. DOOR! S	
Gro	oup I	- WATE	LEAK 10		EVA	AP R	ECH	SIP	CHE	С	50		•		E HEAD	AGUIFE	R PROBLE	M
Gro	oup II	CONT	1 1			1 1 1		.00	1 3 1		500 •01		•	l)	.4E-06	FEET	10	10
	STRT		100 -1			1												
	s																	
			•002			1			1	1	1	1	1	1	, , , , , , , , , , , , , , , , , , , ,			
Group III	PERM		4	4	1 2 2 3 4	1 1 2 2 3 4	1 1 2 2 3 4	1 1 2 2 3 3 4	2 2 3 4 4 3	2 2 3 4 3 3	2 2 2 3 4 3 3	2 2 2 3 4 3 3	2 2 2 3 4 3 3	2 2 2 3 3 3				
	BOTTOM		0															
	SY																	
	RATE		3E-07 100															
	M		10															
	GRND		105															
	QRE	•	2E-07			1												
	DELX		50 20			14			9		9		1	4	21		31	41
			37			25		1			<u> 11</u>			9	13			
			50			1							_					
	DELY		10			5 12			7		10		1	•	18		27	30
		 	31			- 12			6		1			1	1.0		24	
		ĺ	4			4		. 0	5		•			-	- • •			
C	1V	1	5 6			4		. 0										
Gro	oup IV	1	6			4		• 0										
			7			11		• 0 • 1			2							
		1	6			6		-1			~							
		/*	<u>~</u>			_ _												

FIGURE 33.—JCL and data deck to simulate the sample problem without using disk files.

Program Output using data deck illustrated in figure

FOR SIMULATION OF GROUND-WATER FLOW FINITE-DIFFERENCE MODEL U. S. G. S.

---- SAMPLE AQUIFER PROBLEM ----

JANUARY, 1975

NOME NUMBER OF WELLS FOR WHICH DRAWDOWN IS COMPUTED AT A SPECIFIED RADIUS HAXIMUM PERWITTED AUHBER OF ITERATIONS # WORDS OF Y VECTOR USED CHEC SIP RECH LEAK WATE SIMULATION OPTIONS:

1500.000 1.000000 0.9999996E-01 1.000000 1.000000 FEET ON ALPHAMERIC MAP:

MULTIPLICATION FACTOR FOR X DIMENSION =

MULTIPLICATION FACTOR FOR Y DIMENSION =

MAP SCALE IN UNITS OF

NUMBER OF FEET PER INCH

MULTIPLICATION FACTOR FOR DRAWDOWN =

MULTIPLICATION FACTOR FOR HEAD = NUMBER OF PUMPING PERIODS TIME STEPS BETWEEN PRINTOUTS

0.0 0.4000000E-06 10.00000 0.3000000E-02 0.9999998E-02 . . ERROR CRITERIA FOR CLOSURE STEADY STATE ERROR CRITERIA SPECIFIC STORAGE OF CONFINING BED EVAPOTRANSPIRATION RATE EFFECTIVE DEPTH OF ET

MULTIPLICATION FACTOR FOR TRANSMISSIVITY IN X DIRECTION IN Y DIRECTION

1.000000

100,0000 × STARTING HEAD

					ţ	51(STORAGE COEFFICIENT MATRIX	STORAGE COEFFICIENT MATRIX						
-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0
~	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0.0
m	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0
4	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	••	0.0	0.0	0.0	0.0	0 • 0	0.0
₩.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•	0.0	0.0	0 • 0	0 • 0	0.0	0.0	0.0	0.0	0•0	0.0	0•0	0.0	0.0	0.0
~	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
•	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.00000	0.0
•	0.0	0.0	0.0	ò •	0.0	0.0	0.0	-1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000	1.00000	- 1.00000 -	.1.00000	-1.00000		0.0
2	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

0.2000000E-07

AREAL RECHARGE RATE

			i	ACUIFER HY	AGUIFER HYDRAULIC CONDUCTIVITY	VDUCTIVITY	:		
00	00	00	000	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.400E-02	0.0 0.400E-02	000	000	0.200E-02	0.200E-02	0.200E-02	0.0	0.400E-02	0.400E-02
0.0 0.400E-02	0.0 0.400E-02	0.0 0.400E-02	0.200E-02	0.200E-02	0.200E-02	0.200E-02	0.400E-02	0.400E-02	0.400E-02
0.0 0.400E-02	0.0 0.400£-02	0.0 0.400E-02	0.200E-02	0.200E-02	0.200E-02	0.400E-02	0.400E-02	0.400E-02	0.400E-02
0.0 0.400E-02	0.0 0.400E-02	0.0 0.400E-02	0.400E-02	0.4005-02	0.400E-02	0.400E-02	0.400É-02	0.400E-02	0.400E-02
0.0 0.600E-02	0.0 0.600E-02	0.0 0.600E-02	0.400E-02	0.400E-02	0.400E-02	0.6006-02	0.600E-02	0.600E-02	0.600E-02
0.0 0.800E-02	0.0 0.800E-02	00	0.600E-02	0.600E-02	0.600E-02	0.600E=02	0.800E-02	0.800E-02	0.800E-02
0.0 0.600E-02	0.800E-02	0.800E-02	0.800E-02	0.800E-02	0.800E-02	0.8005-02	0.800E-02	0.600E-02	0.600E-02
0.0 0.600E-02	0.0 0.600E-02	0.0 0.600E-02	000	0 • 0	0.0	0.0	0.600E-02	0.600E-02	0.600E-02
00	00	000	000	0 • 0	0.0	0.0	0.0	0 • 0	0 • 0
			Ø	AQUIFER BASE ELEVATION	ELEVATION	0.0			
				SPECIFIC YIELD	YIELD	0.0			
			CONFINING	CONFINING BED HYDRAULIC CONDUCTIVITY*	LIC CONDUCT		0.3000000E-07		
				RIVER HEAD	EAD	. 10	100,0000		
			Ö	CONFINING BED THICKNESS	THICKNESS	. 10	10.00000		
			LA	LAND SURFACE ELEVATION	ELEVATION	. 10	105.0000		

	550.																
	850.						0.0										
	1250.			•009			0.9703214D 00 0.9908112D 00. 0.0										
CT10N	1850.		CTION	1550.	CEDURE		140 00 0.5	12D 00	1.00 DAYS		001	001		WELL RADIUS			2.00
IN X DIRECTION	2050.		OTOTYPE IN Y DIRECTION	1500.	LICIT PRO		0.97032	0.9908112D 0.0		S= 1	= 24,000	= 1,000	8		0.05	សហ	000
ACING IN PROTOTYPE IN	1550.		PROTOTYPE	1350.	RONGLY IM	BETA= 1.00	0.90414180 00	0.97032140 00	10D NO.	NUMBER OF TIME STEPS=	DELT IN HOURS =	MULTIPLIER FOR DELT	6 WELLS	PUMPING RATE	00	0 0	-10.00
	1050.		GRID SPACING IN PROTOTYPE IN Y DIRECTION	•006	SOLUTION BY THE STRONGLY IMPLICIT PROCEDURE	8			PUMPING PERIOD NO. 11	NUMBER OF	DELT	MULTIPLIE		י	44	* *	` . •
GRID SP	700.		GRIDS	700.	SOLUTION		0.69039030 00	0.90414180 00	₹ ;					-	4 m	9 F	- 4 4 0
	450°			500				00 08066069*0									
	450.			350.			TERS: 0.0	9 0									
	700.	650.		250•			ON PARAME										
	1000.	450.		.008			10 ITERATION PARAMETERS:										

			- 8	į	TIME STEP NUMBER =	ł	1	- ;	
			3116	E OF TIME STEP IN	TEP IN SECONDS	u	86400.00		
				TOTAL SIM	TOTAL SIMULATION TIME IN	N SECONDS# NINUTES# HOURS# OAYS#	86400.00 1440.00 24.00 1.00	1000 0000 0000 0000	
			DURATION OF	I OF CURRENT	CURRENT PUMPING PERIOD IN DAYS= YEARS=	D IN DAYS# YEARS#	0 1	1.00 0.00	
CUMUL	CUMULATIVE MASS BA	S BALANCE:	2	r**3		RATES FOR	RATES FOR THIS TIME STEP	STEP	L*#3/T
	SOURCES						STORAGE	STORAGE IN	0.0
	ST	STORAGE =	•	0.0			CONSTANT FLUX	FLUX =	0.2000
	RECHARGE CONSTANT FLUX	CHARGE =	102586.63	.63		EV	PUMPING EVAPOTRANSPIRATION	PUMPING =	-20.0000
	CONSTANT	NT HEAD = Leakage =	1418633,00	3.00			CONSTANT HEAD:	EAD: In #	16.4194
	TOTAL SO	SOURCES =	1748559.00	00.			OUT FAKAGE	OUT *	0.0
	DISCHARGES	Š	c c	ų,	er L	FROM PREVIOUS PUMPING		PERIOD = TOTAL =	0.0 2.4313
	CVATOLIABLICA CONSTANTION QUANTITY PUMPED LEAKAGE TOTAL DISCHARGE	JANT HEAD H TANT HEAD H TY PUMPED H LEAKAGE H DISCHARGE H	1727998,00 1727998,00 1748835,00	, co			SUM OF RATES	ATES #	-0.0032
Δ.	DISCHANGE-SOURCES PER CENT DIFFERENCE	E-SOURCES #	97.5	276,00 0.02					
MAXIMUM HEAD CHANGE FOR		EACH ITERATION:							
9.5204	4.8325	3,7815	7.4434	3,4337	2,6980	1,3149	1.8210	1,1354	0.8168
0.4495	0.5055	0.3512	0.3693	0.2810	0.2107	0960.0	0.1267	0.0765	6050*0
0.0297	0.0322	0.0225	0.0234	0.0179	0.0133	0900.0	0.0080	0.0048	0.0032
0.0019									

TIME STEP : 1

MAXIMUM CHANGE IN MEAD FOR THIS TIME STEP = 32.067

ITERATIONS: 30

PLOT OF DRAWDOWN

00.00021		10500.00	00 • 0006	7500.00	X DISTANCE IN 6000.00	4500°00	3000 000	00.0071		0
	. – –	- •				•	•			7500.00
α	α	α	α	α	α					6000.000
α !		m	4	•	v	15	15	15	91 4	4500.00 600 1N Y DIRECTION.
	œ	o r	so	ω	Φ.	1	1.6	18	18	10 3000.00 FROM ORIGIN I
19	15	±	51	10	::	91	27	22	21	0 10 10
19	20	21	9.	21	15	11	22	22	21	1500.00
23	24	35	18	13	13	11	21	21	21	11
	2525	2728	1919			1717	2020	- 2021 1	,	0.0

R E CONSTANT HEAD BOUNDARY *** = VALUE EXCEEDED 3 FIGURES MULTIPLICATION FACTOR * 1.000

EXPLANATION

;	12000.00		10500.00	00.0006	7500.00	X DIS- TANCE IN 6000.00	4500.00	3000.00		1500,00	c	
	-		- +	•-		+	+	+		+		7500.00 FEET
_		ax.	C C	α	œ	α					1	6000.00 TION, IN
HYDR	Œ	•	Φ	o.	ø.	o	œ	œ	6 0	60 60	80	4500.00 600 IN Y DIRECTION.
PLOT OF	•	0	•	•	σ.	٥	æ	c o	90	60	; ; ;	10 3000.00 FROM ORIGIN I
	ì	œ	.	40	co	40	60	7	~	~		
	7	7	4	a 0 a0	6 0	6 0	6 0	7 7	7 7	7 7		1500.00 DISTANCE F
	~	_	_	60	30	œ	6 0	_	7)1S
į	-	- ^ -	_ ^	- ° - • -	[®] +		• - ^{co}	•	_^_	•	- !	•

R * CONSTANT HEAD BOUNDARY *** = VALUE EXCEEDED 3 FIGURES HULTIPLICATION FACTOR = 0.100

76.9 100.0 84.0 100.0 74.3 100.0 100.0 80.1 100.0 98.1 75.3 19.8 84.9 6.06 74.6 72.6 61.9 85.5 6.06 9.96 71.7 87.4 7.56 81.1 91.1 80.4 83.8 6.58 89.2 86.5 87.5 91.4 95.1 86.1 88.3 90.1 93.4 82.7 100.0 83.0 85.4 87.6 85.8 85.8 82.7 79.5 4.61 78.7 17.0 72.1 81.6 84.8 19.0 77.5 81.4 78.9 78.6 78.0 81.5 100.0 100.0 100.0 100.0 78.8 78.4 78.6 83,9 83.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 84.0 100.0 100.0 100.0 100.0 100.0 ~ • **t**n ø ~ œ 2

HEAD MATRIX

4

0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	21.0	20.5	17.3	0.0	14.1	19.8	27.4	25.7	0.0	0.0
0.0	0.0	0.0	21.1	21.1	20.6	17.2	13.2	13,9	19.6	28.3	25.4	53.9	0.0
0.0	0.0	0.0	21.2	21.4	21.3	17.2	13.1	13,5	18.9	32.1	24.7	23.1	0.0
0.0	0.0	0.0	21.6	22.0	23.0	17.3	12.7	12,5	16.2	21.4	20.5	19.9	0.0
0.0	0.0	0.0	21.4	22.5	27.9	17.0	11.7	10.8	12.6	14.5	15.1	16.0	0.0
0.0	0.0	0.0	18.5	18.6	18.4	14.6	6.6	8.6	6.9	9.1	9.1	0.0	0.0
0.0	16.0	16.1	16.1	16.0	15.2	12.4	9.9	4.0	4.3	3.4	1.9	0.0	0.0
0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			I	HEAD AN	D DRAW	AND DRAWDOWN IN PUMPING WELLS	PUMP	PUMPING WELLS	רר s				
				3	۱ ـ ا	RADIUS		80	DRAWDOWN				
			•										

2.00

Attachment V Generalized Flow Chart For Aquifer Simulation Model

A, MAIN PROGRAM

Flow chart—Continued

Flow chart—Continued

Flow chart—Continued

Flow chart—Continued

Attachment VI Definition Of Program Variables

```
IN DATAI. DUMMY ARRAY (DOES NOT USE CORE SPACE) USED TO
          OBTAIN ADDRESSES OF ARRAY DATA SETS!
ALFA
          CORRECTION VECTOR FOR ROWS (LSOR) #
          PARAMETER IN SIP ALGORITHM;
          TC(I-1,J)/DELY(I) (1/T);
BE
          PARAMETER IN THOMAS ALGORITHMS
BOTTOM
          ELEVATION OF THE BOTTOM OF THE AGUIFER (L) $
          MULTIPLYING FACTOR FOR THE TIME STEP;
CDLT
CHCK
          CONTAINS CHARACTER STRING FOR MASS BALANCE OPTION:
          VECTOR CONTAINING PROBLEM OPTIONS;
CHK
CONTR
          CONTAINS CHARACTER STRING FOR OPTION TO PRINT
          MARS OF DRAWDOWN AND/OR HEAD!
          CONTAINS CHARACTER STRING FOR WATER TABLE-ARTESIAN OPTION!
CONVRT
          TR(I+J=1)/DELX(J) (1/T);
D
          VECTOR THAT CONTAINS DRAWDOWN VALUES (L) $
DDN
          ARRAY USED IN SIP ALGORITHM;
DEL
          TIME INCREMENT (T) #
DELT
          GRID SPACING IN THE X DIRECTION (L) #
DELX
          GRID SPACING IN THE Y DIRECTION (L) ;
DELY
          NUMBER OF ROWS!
DIML
DIMW
          NUMBER OF COLUMNS;
EROR
          STEADY STATE EROR CRITERION (L) :
ERR
          CLOSURE CRITERION (L);
          ARRAY USED IN SIP ALGORITHME
ETA
ETDIST
          DEPTH AT WHICH EVAPOTRANSPIRATION CEASES BELOW LAND
          SURFACE (L) #
          THAT PART OF ET SOURCE TERM TREATED IMPLICITLY;
ETQB
          THAT PART OF ET SOURCE TERM TREATED EXPLICITLY:
ETQD
          CONTAINS CHARACTER STRING FOR EVAPOTRANSPIRATION OPTION:
EVAP
          TR(I+J)/DELX(J) (1/T);
          SEE EXPLANATION IN GROUP III: ARRAY DATA!
FACT
          MULTIPLICATION FACTOR FOR TRANSMISSIVITY IN X DIRECTION:
FACTX
FACTY
          MULTIPLICATION FACTOR FOR TRANSMISSIVITY IN Y DIRECTION:
          PARAMETER IN THOMAS ALGORITHMS
          TC(I+J)/DELY(I) (1/T);
GRND
          ELEVATION OF LAND SURFACE (L) +
          CONTAINS CHARACTER STRING FOR OPTION TO PRINT HEAD VALUES!
HEAD
HEADNG
          TITLE FOR SIMULATION;
HMAX
          MAXIMUM ITERATION PARAMETER (ADI) #
          ACCELERATION PARAMETER (LSOR) $
          BETA PARAMETER (SIP);
          INDICATOR USED TO DETERMINE THE TYPE OF ARRAY DATAS
IC
IERR
          = 0 PUMPING WELLS ARE IN SATURATED PART
          OF WATER TABLE AQUIFER!
          = 1 PUMPING WELL HAS GONE DRY!
          = 0 ALL TIME STEPS EXCEPT THE LAST!
IFINAL
          = 1 LAST TIME STEP IN PUMPING PERIOD:
IFMT1. IFMT2. IFMT3 VARIABLE TORMAT ARRAYS PASSED TO DATAL VIA ARRAY
          ENTRY POINT!
          IN DATAI, DUMMY ARRAY TO WHICH NAME IS PASSED;
IN
INO1
          DIML-1#
IPRN
          SEE EXPLANATION IN GROUP III: ARRAY DATA:
IRECS. IRECD SEE EXPLANATION IN GROUP III. ARRAY DATA:
          RECORD NUMBER USED FOR DISK STORAGE AND RETRIEVAL OF
IRN
          ARRAY DATA:
```

Definition of program variables-Continued

```
ITMAX
          MAXIMUM NUMBER OF ITERATIONS PER TIME STEP!
          SEE EXPLANATION IN GROUP III: ARRAY DATA:
IVAR
TSUM
          THE CUMULATIVE WORDS OF STORAGE USED IN THE Y VECTOR:
IZ.JZ. ETC. DIMENSIONS OF ARRAYS IN MODEL. COMPUTED IN MAIN PROGRAM!
          DIMW-1;
JN01
KEEP
          HYDRAULIC HEAD AT THE PREVIOUS TIME STEP (L) #
KKK
          ASSOCIATED VARIABLE IN DEFINE FILE. INDICATES NUMBER OF
          NEXT RECORD;
KOUNT
          ITERATION COUNTER:
ΚP
          NUMBER OF THE PUMPING PERIOD:
KPM1
          NUMBER OF PREVIOUS PUMPING PERIOD:
ΚT
          TIME STEP COUNTER:
KTH
          NUMBER OF TIME STEPS BETWEEN PRINTOUTS:
          VECTOR CONTAINING INITIAL ADDRESS OF ARRAYS:
LEAK
          CONTAINS CHARACTER STRING FOR LEAKAGE OPTION;
LENGTH
          NUMBER OF ITERATION PARAMETERS (SIP+ADI);
          NUMBER OF ITERATIONS BETWEEN 2-D CORRECTION (LSOR) #
          THICKNESS OF CONFINING OR STREAM BED (L) #
          NUMBER OF PUMPING PERIODS;
NPER
NUM
          CONTAINS CHARACTER STRING FOR OPTION TO PRINT DRAWDOWN!
NUMT
          NUMBER OF TIME STEPS;
          NUMBER OF PUMPING WELLS FOR WHICH DRAWDOWN IS TO BE
NW
          COMPUTED AT A 'REAL' WELL RADIUS!
NWEL
          NUMBER OF WELLS FOR A PUMPING PERIOD:
          LOCATION OF WELLS!
NWR
          CONTAINS CHARACTER STRING FOR OPTION TO PUNCH HYDRAULIC
PNCH
          HEAD VALUES:
          PRINTER UNIT NUMBER:
          ITERATION PARAMETER:
PARAM
PERM
          HYDRAULIC CONDUCTIVITY OF THE AGUIFER (L/T) &
PHE
          HYDRAULIC HEAD AT THE START OF THE ITERATION (L) #
PHI
          HYDRAULIC HEAD (L) $
PU
          PUNCH UNIT NUMBER:
QE T
          MAXIMUM EVAPOTRANSPIRATION RATE (L/T);
          RECHARGE RATE (L/T);
GRE
          READER UNIT NUMBER;
RADIUS
          REAL WELL RADIUS (L);
          VERTICAL HYDRAULIC CONDUCTIVITY OF THE CONFINING BED
RATE
          OR STREAM BED (L/T);
RECH
          CONTAINS CHARACTER STRING FOR RECHARGE OPTION;
RHO
          SIDELT (1/T);
RHOP
          VECTOR CONTAINING ITERATION PARAMETERS;
RIVER
          HYDRAULIC HEAD OF THE STREAM OR IN THE AQUIFER
          ABOVE OR BELOW THE PUMPED AGUIFER (L) #
RW
          WELL AND RECHARGE SOURCE TERM (L/T) #
S
          STORAGE COEFFICIENTS
SIP
          CONTAINS CHARACTER STRING FOR SIP OPTION:
          STEADY PART OF LEAKAGE COEFFICIENT (L/T) #
SI
SLEAK
          INITIAL & TRANSIENT LEAKAGE (L/T) #
SS
          SPECIFIC STORAGE OF CONFINING BED (1/L) #
          CONTAINS EITHER THE STORAGE COEFFICIENT OR SPECIFIC
STORE
          YIELD DEPENDING ON THE TYPE OF AQUIFER:
STRT
          HYDRAULIC HEAD AT THE BEGINNING OF THE CURRENT
          PUNPING PERIOD (L);
          MODIFIES STORAGE TERM IN WATER TABLE-ARTESIAN CONVERSION!
SURS
          TOTAL ELAPSED TIME IN THE SIMULATION (T):
TOTAL ELAPSED TIME IN THE PUMPING PERIOD (T):
SUM
SUMP
          HYDRAULIC HEAD AT THE START OF THE SIMULATION (L):
SURI
SY
          SPECIFIC YIELD:
          TRANSMISSIVITY (L##2/T);
TC
          HARMONIC AVERAGE OF T/DELY # I+1/2+J (L/T) #
```

Definition of program variables-Continued

```
TEMP
          VECTOR FOR TEMPORARY STORAGE OF HYDRAULIC HEAD (1) &
TEST
          = 0 CLOSURE CRITERION SATISFIED:
          = 1 CLOSURE CRITERION NOT SATISFIED:
          MAXIMUM CHANGE IN HEAD FOR THE TIME STEP (L) !
TEST2
TEST3
          VECTOR CONTAINING THE SUM OF THE ABSOLUTE VALUES
          OF HEAD CHANGES FOR EACH ITERATION (L) $
TL
          TRANSIENT PART OF LEAKAGE COEFFICIENT (1/T) !
TMAX
          NUMBER OF DAYS IN THE PUMPING PERIOD (T) :
          MINIMUM VALUE OF DIMENSIONLESS TIME FOR THE CURRENT
TMIN
          PUMPING PERIOD:
TOP
          ELEVATION OF THE TOP OF THE AGUIFER (L):
          HARMONIC AVERAGE OF T/DELX @ I.J+1/2 (L/T);
TR
          MAXIMUM VALUE OF DIMENSIONLESS TIME FOR THE CURRENT
TT
          PUMPING PERIOD:
          = 0 EXPLICIT TREATMENT OF TRANSIENT LEAKAGE;
U
          = 1 IMPLICIT TREATMENT OF TRANSIENT LEAKAGE;
U
          INDICATES DEFINE FILE RECORD LENGTH SPECIFICATION IN WORDS:
          ARRAY USED IN SIP ALGORITHMS
VF4
          VARIABLE FORMAT FOR PRINTING HEAD AND DRAWDOWN;
WATER
          CONTAINS CHARACTER STRING FOR WATER TABLE OPTION:
WELL
          WELL DISCHARGE (L##3/T);
WF
          WELL RADIUS (L) #
ΧI
          ARRAY CONTAINING INCREMENTAL HEAD VALUES IN SIP SOLUTION (L):
٧
          VECTOR CONTAINING ARRAY STORAGE:
YDIM
          LENGTH OF AQUIFER IN Y DIRECTION (L).
DEFINITION OF VARIABLES IN CHECKI SUBROUTINE
CFLUX
          INFLOW FROM RECHARGE WELLS (L**3/T);
          CUMULATIVE VOLUME OF WATER FROM RECHARGE WELLS (L**3) #
CFI UXT
          RATE OF OUTFLOW TO CONSTANT HEAD BOUNDARY (L##3/T) #
CHD1
          RATE OF INFLOW FROM CONSTANT HEAD BOUNDARY (L**3/T);
CHD2
          CUMULATIVE DISCHARGE TO CONSTANT HEAD BOUNDARY (L**3);
CHDT
          CUMULATIVE VOLUME OF WATER INFLOW FROM CONSTANT
CHST
          HEAD BOUNDARY (L*#3);
DIFF
          ERROR IN MASS BALANCE (L##3);
          EVAPOTRANSPIRATION RATE (L##3/T);
ETFLUX
ETFLXT
          CUMULATIVE DISCHARGE BY ET (L*#3):
FLUX
          RATE OF LEAKAGE DUE TO GRADIENTS AT THE START
          OF THE PUMPING PERIOD (L##3/T) 8
FLUXS
          NET LEAKAGE RATE (L##3/T);
          RATE OF DISCHARGE BY LEAKAGE (L**3/T);
FLXN
FLXNT
          CUMULATIVE VOLUME OF WATER DISCHARGED BY LEAKAGE (L**3):
          CUMULATIVE VOLUME OF WATER INFLOW FROM LEAKAGE (L**3);
FLXPT
PERCNT
          PERCENT ERROR IN CUMULATIVE MASS BALANCE!
          DISCHARGE FROM WELLS (L**3/T) :
PUMP
PUMPT
          CUMULATIVE VOLUME OF WATER DISCHARGED BY PUMPING WELLS (L**3);
QREFLX
          RECHARGE RATE (L##3/T) ;
QRET
          CUMULATIVE VOLUME OF WATER DERIVED FROM RECHARGE (L##3):
STOR
          RATE OF CHANGE IN STORAGE FOR THE TIME STEP (L##3/T);
STORT
          CUMULATIVE VOLUME OF WATER DERIVED FROM STORAGE (L**3) #
          SUM OF RECHARGE AND DISCHARGE RATES FOR THE TIME STEP (L**3/T):
SUMR
TOTL1
          CUMULATIVE VOLUME OF WATER FROM ALL SOURCES (L**3);
          CUMULATIVE VOLUME OF WATER DISCHARGED FROM THE SYSTEM (L++3):
TOTL2
XNET
          NET LEAKAGE RATE FOR A CELL (L*#3/T).
DEFINITION OF VARIABLES IN THE PRINTAL SUBROUTINE
BLANK
          CONTAINS BLANK SYMBOLS:
DINCH
          NUMBER OF MAP UNITS PER INCH!
DIST
          LOCATION OF NEXT COLUMN OF NODAL VALUES TO BE PRINTED:
```

Definition of variables in the PRNTAI subroutine—Continued

FACT1	FACTOR FOR ADJUSTING VALUE OF DRAWDOWN PRINTED:
FACT2	FACTOR FOR ADJUSTING VALUE OF HEAD PRINTED;
K	ADJUSTED VALUE OF DRAWDOWN OR HEAD;
MESUR	NAME OF MAP LENGTH UNIT;
N	INDEX FOR SYMBOLS;
NA	INDICES FOR LOCATING X LABEL;
NC	NUMBER OF BLANKS BEFORE GRAPH!
N1	NUMBER OF LINES PER INCH;
NZ	NUMBER OF CHARACTERS PER INCH!
N3	NUMBER OF CHARACTERS PER LINE;
N4	NUMBER OF LINES IN THE PLOT:
N8	MAXIMUM NUMBER OF CHARACTERS IN Y DIRECTION;
NXD	NUMBER OF INCHES IN THE X DIMENSION OF PLOTE
NYD	NUMBER OF INCHES IN THE Y DIMENSION OF PLOTE
PRNT	CONTAINS THE ARRANGEMENT OF SYMBOLS FOR EACH LINE;
SPACNG	CONTOUR INTERVAL (L);
SYM	VECTOR CONTAINING SYMBOLS USED IN THE PLOT:
TITLE	TITLE FOR PLOT:
	F3 VARIABLE FORMATS FOR CENTERING PLOT:
XLABEL	** · * · · · · · · · · · · · · · · ·
XN	NUMBERS FOR X AXIS!
XNI	1 INCH/(N1*2);
XSCALE	MULTIPLICATION FACTOR TO CONVERT MODEL LENGTH UNIT
	TO UNIT USED IN X DIRECTION ON MAPS;
XSF	X SCALE FACTOR!
YLABEL	LABEL FOR Y AXIS!
YLEN	LOCATION OF NEXT VALUE IN THE COLUMN TO BE PRINTED!
YN	NUMBERS FOR Y AXIS!
YSCALE	MULTIPLICATION FACTOR TO CONVERT MODEL LENGTH UNIT
	TO UNIT USED IN Y DIRECTION ON MAPS!
YSF	Y SCALE FACTOR:
Z	LOCATION OF NEXT LINE TO BE PRINTED.